- we can draw on the equations of the general theory of
- Математика: мы можем использовать
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Logic and the philosophy of mathematics in the nineteenth century — John Stillwell INTRODUCTION In its history of over two thousand years, mathematics has seldom been disturbed by philosophical disputes. Ever since Plato, who is said to have put the slogan ‘Let no one who is not a geometer enter here’ over the… … History of philosophy
probability theory — Math., Statistics. the theory of analyzing and making statements concerning the probability of the occurrence of uncertain events. Cf. probability (def. 4). [1830 40] * * * Branch of mathematics that deals with analysis of random events.… … Universalium
Introduction to gauge theory — This article is an accessible, non technical introduction to the subject. For the main encyclopedia article, see Gauge theory. Quantum field theory … Wikipedia
Navier–Stokes equations — Continuum mechanics … Wikipedia
Science and mathematics from the Renaissance to Descartes — George Molland Early in the nineteenth century John Playfair wrote for the Encyclopaedia Britannica a long article entitled ‘Dissertation; exhibiting a General View of the Progress of Mathematics and Physical Science, since the Revival of Letters … History of philosophy
Potential theory — may be defined as the study of harmonic functions. Definition and comments The term potential theory arises from the fact that, in 19th century physics, the fundamental forces of nature were believed to be derived from potentials which satisfied… … Wikipedia
Gauss–Codazzi equations — In Riemannian geometry, the Gauss–Codazzi–Mainardi equations are fundamental equations in the theory of embedded hypersurfaces in a Euclidean space, and more generally submanifolds of Riemannian manifolds. They also have applications for embedded … Wikipedia
algebra — /al jeuh breuh/, n. 1. the branch of mathematics that deals with general statements of relations, utilizing letters and other symbols to represent specific sets of numbers, values, vectors, etc., in the description of such relations. 2. any of… … Universalium
physical science, principles of — Introduction the procedures and concepts employed by those who study the inorganic world. physical science, like all the natural sciences, is concerned with describing and relating to one another those experiences of the surrounding… … Universalium
economic stabilizer — Any of the institutions and practices in an economy that serve to reduce fluctuations in the business cycle through offsetting effects on the amounts of income available for spending (disposable income). The progressive income tax, unemployment… … Universalium
Euclidean geometry — A Greek mathematician performing a geometric construction with a compass, from The School of Athens by Raphael. Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his… … Wikipedia